NCBI ROFL: Predicting the buoyancy, equilibrium and potential swimming ability of giraffes by computational analysis.

Discoblog
By ncbi rofl
Dec 15, 2010 6:00 AMNov 19, 2019 11:41 PM
3906811704_2d51d364b4.jpeg

Newsletter

Sign up for our email newsletter for the latest science news
 

"Giraffes (Giraffa camelopardalis) are often stated to be unable to swim, and while few observations supporting this have ever been offered, we sought to test the hypothesis that giraffes exhibited a body shape or density unsuited for locomotion in water. We assessed the floating capability of giraffes by simulating their buoyancy with a three-dimensional mathematical/ computational model. A similar model of a horse (Equus caballus) was used as a control, and its floating behaviour replicates the observed orientations of immersed horses. The floating giraffe model has its neck sub-horizontal, and the animal would struggle to keep its head clear of the water surface. Using an isometrically scaled-down giraffe model with a total mass equal to that of the horse, the giraffe's proportionally larger limbs have much higher rotational inertias than do those of horses, and their wetted surface areas are 13.5% greater relative to that of the horse, thus making rapid swimming motions more strenuous. The mean density of the giraffe model (960 gm/l) is also higher than that of the horse (930 gm/l), and closer to that causing negative buoyancy (1000 gm/l). A swimming giraffe - forced into a posture where the neck is sub-horizontal and with a thorax that is pulled downwards by the large fore limbs - would not be able to move the neck and limbs synchronously as giraffes do when moving on land, possibly further hampering the animal's ability to move its limbs effectively underwater. We found that a full-sized, adult giraffe will become buoyant in water deeper than 2.8m. While it is not impossible for giraffes to swim, we speculate that they would perform poorly compared to other mammals and are hence likely to avoid swimming if possible."

Photo: flickr/Daniel Voyager

Related content: Discoblog: NCBI ROFL: Heat loss in Dumbo: a theoretical approach. Discoblog: NCBI ROFL: Best materials and methods ever. Discoblog: NCBI ROFL: Cooperation and individuality among man-eating lions. WTF is NCBI ROFL? Read our FAQ!

1 free article left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

1 free articleSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

More From Discover
Recommendations From Our Store
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 LabX Media Group