We have completed maintenance on DiscoverMagazine.com and action may be required on your account. Learn More

How Animals Follow Their Nose

It’s not easy to find the source of a swirling scent plume. Scientists are using experiments and simulations to uncover the varied strategies that animals employ.

By Dana Mackenzie, Knowable Magazine
Mar 20, 2023 7:00 PM
smell-navigation-1600x600
(Credit: Knowable Magazine)

Newsletter

Sign up for our email newsletter for the latest science news
 

On October 2, 2022, four days after Hurricane Ian hit Florida, a search-and-rescue Rottweiler named Ares was walking the ravaged streets of Fort Myers when the moment came that he had been training for. Ares picked up a scent within a smashed home and raced upstairs, with his handler trailing behind, picking his way gingerly through the debris.

They found a man who had been trapped inside his bathroom for two days after the ceiling caved in. Some 152 people died in Ian, one of Florida’s worst hurricanes, but that lucky man survived thanks to Ares’ ability to follow a scent to its source.

We often take for granted the ability of a dog to find a person buried under rubble, a moth to follow a scent plume to its mate or a mosquito to smell the carbon dioxide you exhale. Yet navigating by nose is more difficult than it might appear, and scientists are still working out how animals do it.

“What makes it hard is that odors, unlike light and sound, don’t travel in a straight line,” says Gautam Reddy, a biological physicist at Harvard University who coauthored a survey of the way animals locate odor sources in the 2022 Annual Review of Condensed Matter Physics. You can see the problem by looking at a plume of cigarette smoke. At first it rises and travels in a more or less straight path, but very soon it starts to oscillate and finally it starts to tumble chaotically, in a process called turbulent flow. How could an animal follow such a convoluted route back to its origin?

Over the last couple of decades, a suite of new high-tech tools, ranging from genetic modification to virtual reality to mathematical models, have made it possible to explore olfactory navigation in radically different ways. The strategies that animals use, as well as their success rates, turn out to depend on a variety of factors, including the animal’s body shape, its cognitive abilities and the amount of turbulence in the odor plume. One day, this growing understanding may help scientists develop robots that can accomplish tasks that we now depend on animals for: dogs to search for missing people, pigs to search for truffles and, sometimes, rats to search for land mines.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.