#15: Model Solves Fundamental Packing Problem

How do different-sized spheres fit into a large container?

By Stephen Ornes
Jan 25, 2010 6:00 AMNov 12, 2019 6:22 AM

Newsletter

Sign up for our email newsletter for the latest science news
 

The county-fair challenge of guessing how many gum balls are in a jar is far more than just a game for kids; understanding how objects pack into a particular volume is a fundamental problem of physics and engineering. A team of physicists at New York University recently loosened the problem a bit, producing a simple model that predicts the arrangement of randomly packed spherical particles, even when the objects are of different sizes.

Theorists had previously calculated that each particle touches an average of six neighbors, and that packed spheres of uniform size fill about 64 percent of the total available space. Jasna Brujic and colleagues experimentally verified both of those claims using a three-dimensional microscope—which examines many horizontal layers of a sample and then stacks those images to create a 3-D image—to analyze oil droplets tightly packed in water. The physicists also studied how changing the mix of droplet sizes affects their arrangement.

“If you give us the distribution of particle sizes, we can tell you about their geometry,” Brujic says. The research, published in Nature in July, could inspire better ways to stock vending machines, prepare products for shipping, grind drugs for pills, and extract petroleum from porous rocks. But so far Brujic has modeled only spheres; contestants dealing with gumdrops or M&M’s will have to wait for future studies.

1 free article left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

1 free articleSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 LabX Media Group