Dr. Charles Taylor would love to experiment with your arteries. He's a natural-born tinkerer, and the idea of operating on you only once and calling it a day seems less than ambitious to him. He's especially interested if you happen to be one of the millions of Americans who suffer from atherosclerosis: dangerous buildups of arterial plaque that hinder blood flow, causing pain, heart attacks, strokes, and in the worst case, death. Were you to hand over your clogged arteries to Taylor, he'd play vascular surgeon and gleefully perform as many as five, even 10 different surgeries on you. And before long he'd be wanting your heart, your liver, and your lungs in order to cut them, stitch them, and subject them to all sorts of pharmaceuticals. Ultimately, if his wish comes true, Taylor will have all your body— down to the last molecule— trapped right where he wants it: on his computer.
Taylor is not a medical doctor. He is a doctor of engineering, but he is also an assistant professor in the departments of surgery and mechanical engineering at Stanford Medical School. He has never cut into a live patient to fix blocked arteries, as his surgical colleagues do every day. Instead, he and his graduate students spend their days perfecting a software program they invented called ASPIRE— Advanced Surgical Planning Interactive Research Environment.
The program gives a vascular surgeon the opportunity to tinker in cyberspace with a patient's arteries, experimenting with different placements for arterial bypasses, different makes of artificial arteries, and a variety of other options to restore blood flow. In virtual reality, doctors are free to follow hunches, even to commit errors, with the luxury of trying again and again until they have explored every option. Then, with the click of a button, ASPIRE can predict which choice will have the best outcome. Right now, by contrast, each vascular surgery is a one-shot experiment performed in real time.