In a cluttered ground-floor laboratory at one corner of the University of Washington’s Seattle campus, Sam Wasser hunches over a gray toaster-size instrument. “This is it,” he says. “This is what makes it all possible.” The device is a liquid-nitrogen-cooled mill that can pulverize a piece of tusk without destroying its DNA. Genetic detectives can then use that information to determine where in the vast continent of Africa the elephant lived and died. Over the next few months, Wasser and his team hope to unravel the origins of the largest load of contraband ivory ever seized and furnish international investigators with the data they need to crack the criminal networks that continue to devastate Africa’s elephant herds.
Tusks grow throughout an elephant’s life and can weigh up to 130 pounds. One study noted that the average weight of a traded tusk dropped from 22 pounds in 1979 to 7 pounds in 1990.
Such knowledge is essential if African countries and their supporters hope to enforce the ban on international ivory trading enacted 16 years ago. The agreement was reached to stem the slaughter of the herds, whose numbers had dropped from 1.3 million in 1979 to just over 600,000 in 1989. For a few years, poaching declined, herds began recovering, and in 1997 USA Today proclaimed that “the illegal ivory trade has been virtually wiped out.”
The declaration proved premature. Smugglers became more sophisticated and poachers more covert. Elephant kills on the savanna are easy to spot and count. But as logging opened up vast swaths of Central African rain forest, poachers increasingly targeted elusive forest elephants under a green canopy that hid their kills from aerial surveillance.