Life Beyond Boiling

At 212 degrees water turns to steam, and proteins--the very stuff of life--turns to glop. But in some canisters in Georgia, a select group of creatures are just warming up.

By Will Hively
May 1, 1993 5:00 AMNov 12, 2019 5:57 AM

Newsletter

Sign up for our email newsletter for the latest science news
 

Mike Adams is probably the only researcher in North America growing microbes that can flatten cinder-block walls. He doesn’t like you to confuse them with ordinary life. Let me call them organisms, he says. They’re not really bacteria. But they do have some nasty habits, a product no doubt of their bad environment. Most of them originally came from hot springs at the bottom of the ocean--spectacular smoking, sulfur- rich caldrons where pressurized water shoots from volcanic vents at temperatures as high as 700 degrees.

As you step inside the room where these tough little creatures grow, a strong metal door slams impressively shut. Cinder-block walls and a plain cement floor add bunkerlike touches. The incubating tank--a brand-new 120-gallon fermenter, freshly painted blue--looks sturdy enough for deep- sea diving. No one works near it while the microbes grow. A bundle of wires leads from the incubator to a sealed-off, computerized control room next door. The wall opposite this control room is designed to blow out under pressure. Everything is explosion-proof, Adams says.

Most of the organisms we work with are decomposers that make hydrogen, he explains. They feed on sulfur and give off hydrogen sulfide, which gives the fermenter the pleasant aroma of crate upon crate of rotten eggs. As a bonus, they also give off a little of the same explosive gas that filled the Hindenburg. But Adams says this is a minor consideration.

His microbes’ craving for heat, though, is a major consideration. These organisms enjoy being simmered in boiling-hot water. That sets them apart from all other life. At 212 degrees, the molecules that we’re made of--that all life as we know it is made of--fall apart. DNA comes unglued, and proteins collapse in a tangled heap, usually within seconds. We depend on the murderous efficiency of boiling water to purify food and sterilize medical instruments. Yet Adams could boil his organisms forever. They don’t merely survive the heat, they thrive in it. It makes them grow and multiply. Many types, in fact, find 212 a bit tepid. A hotter bath, say around 220 in a pressure cooker, massages their molecules, perks up their peptides, and makes them even more eager to reproduce.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.