Kevin Warwick is about to become telepathic, luck and technology permitting. His lips are parted expectantly as he sits blindfolded and perched on a lab stool at Reading University in England. One inch below his left wrist, a pincushion array of 100 silicon electrodes, all of them together about one-sixteenth the size of a dime, has been surgically inserted into his median nerve. From the electrodes, 22 wires run eight inches under the skin and exit one inch below his elbow. There they are soldered to a connector board where a 2-inch-by-2-inch maze of circuitry amplifies, filters, and converts the electrochemical impulses coming down his median nerve into digital signals. His wife, Irena, sits across the lab, looking considerably more nervous. Three wires exit through needle-hole-size incisions just above her wrist. Irena's setup is less spectacular, jerry-rigged to last only the afternoon, not the three months Warwick has carried his wiring around, but it seems to work just fine. Whenever Irena wiggles a finger or clenches a fist, the electrode picks up the impulses from her nerve and feeds them into a computer. There algorithms decode them into a series of digital signals that are sent via Internet to another computer that radios them to an antenna connected to Warwick's dangling circuitry. The signal is fed directly into Warwick's nerve, causing a "tingling sensation, like a mild electric shock," he says. The first direct trans-nervous-system signals are barely more than cyborg baby talk—just basic motor output to sensory input. But for Warwick, they are a milestone in the journey to a day when we will all walk around with chips in our brains that allow us to wirelessly and silently convey our thoughts as automatically and thoughtlessly as we use telephones today. Before that happens, Warwick says, neural-machine interfaces like the one in his arm will control robotic body parts, enabling the paralyzed to walk and the blind to see. Smart chips implanted directly into the brain, he says, will control Parkinson's disease, epilepsy, and even depression by monitoring and regulating errant nerve signals. Meanwhile, he says, embedded chips will replace keyboards (we'll think, and the computer will type it out), remote controls will become as antiquated as rotary phones, and learning a foreign language will mean little more than buying the right chip. In the world Warwick envisions in his new book, I, Cyborg, the boundary between our nervous systems and computers will disappear, and self-improvement will become synonymous with upgrade. But not surprisingly, he has met with skepticism from some of his colleagues. "I'd call him a charlatan, but since he seems to believe his ridiculous predictions, he's more of a buffoon," says Inman Harvey of nearby Sussex University's cognitive and computing sciences department.