Happy New Year! For a limited time only, access all online articles for free.

How our skin helps us to listen

Not Exactly Rocket Science
By Ed Yong
Nov 26, 2009 12:00 AMNov 5, 2019 12:11 AM

Newsletter

Sign up for our email newsletter for the latest science news
 

What part of the body do you listen with? The ear is the obvious answer, but it's only part of the story - your skin is also involved. When we listen to someone else speaking, our brain combines the sounds that our ears pick up with the sight of the speaker's lips and face, and subtle changes in air movements over our skin. Only by melding our senses of hearing, vision and touch do we get a full impression of what we're listening to.

When we speak, many of the sounds we make (such as the English "p" or "t") involve small puffs of air. These are known as "aspirations". We can't hear them, but they can greatly affect the sounds we perceive. For example, syllables like "ba" and "da" are simply versions of "pa" and "ta" without the aspirated puffs.

If you looked at the airflow produced by a puff, you'd see a distinctive pattern - a burst of high pressure at the start, followed by a short round of turbulence. This pressure signature is readily detected by our skin, and it can be easily faked by clever researchers like Bryan Gick and Donald Derrick from the University of British Columbia.

Gick and Derrick used an air compressor to blow small puffs of air, like those made during aspirated speech, onto the skin of blindfolded volunteers. At the same time, they heard recordings of different syllables - either "pa", "ba", "ta" or "da" - all of which had been standardised so they lasted the same time, were equally loud, and had the same frequency.

Gick and Derrick found that the fake puffs of air could fool the volunteers into "hearing" a different syllable to the one that was actually played. They were more likely to mishear "ba" as "pa", and to think that a "da" was a "ta". They were also more likely to correctly identify "pa" and "ta" sounds when they were paired with the inaudible puffs.

This deceptively simple experiment shows that our brain considers the tactile information picked up from our skin when it deciphers the sounds we're listening to. Even parts of our body that are relatively insensitive to touch can provide valuable clues. Gick and Derrick found that their fake air puffs worked if they were blown onto the sensitive skin on the back of the hand, which often pick up air currents that we ourselves create when we speak. But the trick also worked on the back of the neck, which is much less sensitive and unaffected by our own spoken breaths.

While many studies have shown that we hear speech more accurately when it's paired with visual info from a speaker's face, this study clearly shows that touch is important too. In some ways, the integration of hearing and touch isn't surprising - both senses involve detecting the movement of molecules vibrating in the world around us. Gick and Derrick suggest that their result might prove useful in designing aids for people who are hard of hearing.

Reference: Nature doi:10.1038/nature08572

More on perception:

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2025 LabX Media Group