We have completed maintenance on DiscoverMagazine.com and action may be required on your account. Learn More

Why Nuclear Fusion Is Always 30 Years Away

What's the hold up?

The Crux
By Nathaniel Scharping
Mar 23, 2016 8:50 PMApr 20, 2020 2:24 AM
Joint European Torus tokamak generator - EUROfusion
The Joint European Torus tokamak generator, as seen from the inside. (Credit: EUROfusion)

Newsletter

Sign up for our email newsletter for the latest science news
 

Nuclear fusion has long been considered the “holy grail” of energy research. It represents a nearly limitless source of energy that is clean, safe and self-sustaining. Ever since its existence was first theorized in the 1920s by English physicist Arthur Eddington, nuclear fusion has captured the imaginations of scientists and science-fiction writers alike.

Fusion, at its core, is a simple concept. Take two hydrogen isotopes and smash them together with overwhelming force. The two atoms overcome their natural repulsion and fuse, yielding a reaction that produces an enormous amount of energy. But a big payoff requires an equally large investment, and for decades we have wrestled with the problem of energizing and holding on to the hydrogen fuel as it reaches temperatures in excess of 150 million degrees Fahrenheit.

To date, the most successful fusion experiments have succeeded in heating plasma to over 900 million degrees Fahrenheit, and held onto a plasma for three and a half minutes, although not at the same time, and with different reactors. The most recent advancements have come from Germany, where the Wendelstein 7-X reactor recently came online with a successful test run reaching almost 180 million degrees, and China, where the EAST reactor sustained a fusion plasma for 102 seconds, although at lower temperatures.

Still, even with these steps forward, researchers have said for decades that we're still 30 years away from a working fusion reactor. Even as scientists take steps toward their holy grail, it becomes ever more clear that we don’t even yet know what we don’t know.

The first plasma achieved with hydrogen at the Wendelstein 7-X reactor. Temperatures in the reactor were in excess of 170 million degrees Fahrenheit. (Credit: IPP)
0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.