We have completed maintenance on DiscoverMagazine.com and action may be required on your account. Learn More

Genetically Modifying Mosquitoes to Eliminate Disease

A remarkable scheme to alter the pest’s DNA could change the disease-carrying species for the better — or wipe them off the Earth.

By Jeff Wheelwright
Feb 20, 2015 12:00 AMDec 3, 2019 4:23 PM
Electron Micrograph Anopheles Mosquito - Science Source
The Anopheles mosquito, shown in an electron micrograph, spreads the malaria parasite. (Credit: Thierry Berrod/Mona Lisa Production/Science Source)

Newsletter

Sign up for our email newsletter for the latest science news
 

Mosquitoes have pestered mankind for as long as we’ve had the wits to swat them. A mere annoyance in the temperate zones, mosquitoes in the tropics carry serious diseases, such as malaria and dengue fever. The former causes more than half a million deaths each year, mostly among children under 5, and the parasite responsible for malaria keeps growing more resistant to drugs. Meanwhile, the World Health Organization considers dengue fever the most important viral-borne disease in the world, with cases since World War II increasing thirtyfold — up to 50 million annual infections.

If you block the mosquitoes, the diseases’ vectors, you block their microbial payloads, but that’s easier said than done. Since DDT was taken off the market, mosquitoes in Africa, Asia and Latin America have evolved resistance to today’s less toxic chemical sprays. Biological methods, which pit other organisms (ranging from fungi to fish) against mosquitoes, have seen only partial success.

Their options dwindling, researchers have turned to genetic engineering as the last resort and new frontier of mosquito control. The ambitious goal here is to alter the mosquito’s DNA: to insert a change on the chromosomes of not just laboratory captives, but of an entire species.

There are two basic approaches. The more radical of the two, known somewhat euphemistically as population suppression, would insert a biochemical self-destruct mechanism into the insects’ DNA, a time bomb to wipe out the whole species. Under the milder scenario, called population replacement, genetically modified mosquitoes would gradually displace the wild ones. For example, in experiments, scientists have transplanted genes to make the Anopheles mosquito resistant to the Plasmodium parasite that causes malaria.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.