This spring, Hines published a scathing critique of nine Einstein’s-brain studies in Brain and Cognition. Diamond’s study on glia wasn’t blinded, he pointed out. Higher neuron density has also been reported in schizophrenics, making Harvey’s observation of dubious value. It’s far from clear that Einstein had dyslexia. And Falk, Hines says, hasn’t demonstrated that the unusual brain convolutions she found are due to anything but random variation.
Hines is not alone in his skepticism. Psychiatrist Lena Palaniyappan of the University of Nottingham sounds a note of caution about comparing different brains’ convolutions. If you’re analyzing brains from two different species, more convolutions do mean more smarts. But, he notes, no one has demonstrated such a relationship when comparing human brains. So it’s not clear what reports of extra convolutions in the Einstein brain really amount to.
Ann McKee, the Boston University neuropathologist who sounded the alarm about chronic traumatic encephalopathy in football players who have suffered concussions, says she’s wary of studies purporting to ascribe mental function to structure alone.
That’s because structure tells only part of the story. Neural impulses race all over the brain, tying together both distant and adjacent structures moment by moment. Not taking those relationships between brain areas into account would be like trying to understand Manhattan’s commerce by studying buildings but not traffic patterns.
These neural relationships are “so evanescent,” McKee says, “and it’s something that’s only captured by studies of function, which are not possible from a postmortem exam.”
Howard University physiology professor Mark Burke says the idiosyncratic way Harvey cut up the brain makes it hard to study, even with unbiased, state-of-the-art cell-counting techniques. He recalls his disappointing pilgrimage to the National Museum of Health and Medicine in Silver Spring, Md., where much of what’s left of Einstein’s brain now rests.
“I just kind of shook my head and said, ‘Wow,’ ” Burke recalls. “It’s a shame that it wasn’t done systematically.”
The brain, he says, is of “limited scientific value at this point.”
But even if Einstein’s brain were intact enough to be plumbed with the tools of modern science, we might have to remain agnostic about the source of his brilliance.
Harvard neurology professor Albert Galaburda believes that even if we could resurrect Einstein, we still would not be able to explain his mind. “[If] he has some differences, you can’t tell that that’s why he became a great physicist,” he says. “Maybe it’s because that’s what doing physics does to your brain.”
[This article originally appeared in print as "Between the Folds."]