In September 1991, four women and four men in NASA-style jumpsuits entered the air lock of Biosphere 2. Twelve days into the mission, Jane Poynter, a young Englishwoman in charge of the farm, put her hand in a threshing machine while winnowing rice. The group’s doctor sewed the tip of her middle finger back on, but the graft didn’t take and she was evacuated for surgery. She returned in only a few hours to serve out the two-year mission, but when she reentered the air lock, a duffel bag was placed inside with her. It contained nothing of substance, Poynter said—some circuit boards and a planting plan for the rain forest—but the media had a field day with it, along with the fact that someone had left and then reentered, which couldn’t have been done on Mars.
More ominous, signs of trouble with the internal atmosphere began within 24 hours. Each morning the crew had a breakfast meeting over bowls of home-grown porridge in Star Trek–style chairs around a polished black granite table. The morning after closure, the crew captain announced that carbon dioxide in Biosphere 2’s atmosphere had risen to 521 parts per million, a 45 percent increase above levels outside at the time. By the following day, the lowest it went was 826. Over the months that followed, the news at the morning meetings got worse. Crew members were feeling tired and began to pant when they climbed stairs.
In May 1992 in Palisades, New York, geochemist Wally Broecker got a phone call from someone at Biosphere 2, asking if he would be willing to consult on their atmosphere. Since the late 1970s, when he became the Newberry Professor of Earth and Environmental Sciences at Columbia University’s Lamont-Doherty Earth Observatory, Broecker had been sounding the alarm about a buildup of carbon dioxide in the big atmosphere. An elfish presence with a dried-apple-doll face and wild, tousled hair, he was already one of the great men of atmospheric-change research when he crossed the George Washington Bridge for dinner with John Allen at a Manhattan restaurant. The meeting had a cloak-and-dagger feel. Allen, a handsome, clean-shaven, broad-shouldered man who often wore a fedora, reminded Broecker of Indiana Jones. By Broecker’s account, Allen proffered a graph of the gas composition of Biosphere 2’s atmosphere, then nervously pulled it back, as if someone else might see it. A week later Broecker flew to Arizona and began collecting data.
Much attention had been focused on charismatic species when Biosphere 2 was put together. A biologist surveyed the world’s hummingbirds to find one with a bill the right shape to pollinate a variety of plants inside the structure, and without a mating display predisposing it to fatal collisions with the glass. But Broecker and his graduate student Jeffrey Severinghaus discovered that the culprits in the carbon dioxide problem were the tiniest organisms on board: soil bacteria.
The process of their subversion was respiration, in which living things release carbon dioxide into the atmosphere. Green plants absorb sunlight and carbon dioxide during photosynthesis, making carbohydrates and releasing oxygen, but they also do the reverse: Plants, too, respire (or breathe), burning carbohydrates to do work like making branches and roots. In the soil around their roots, billions of fungi and soil bacteria respire as well. In fact, the greater part of all “breathing” in terrestrial systems goes on underground.
Ever grand in their ambitions, Allen and his people intended Biosphere 2 to be used by rotating crews for 100 years. Feeling they had one shot to invest their world with life-giving nutrients, they had loaded their soils with compost and rich muck from the bottom of a cattle pond. (Agricultural chemicals used inside might end up in their air and water.) When the air locks closed, soil bacteria had a massive party, exhaling carbon dioxide and tipping the balance the wrong way.
As oxygen was converted to carbon dioxide, free oxygen in the atmosphere declined. By January 1993, Biosphere 2’s carbon dioxide levels were 12 times that of the outside, and oxygen levels were what mountaineers get at 17,000 feet. The crew’s doctor was having trouble adding up simple figures and disqualified himself from duty. So, a year and four months into the mission, tank trucks containing 31,000 pounds of liquid oxygen started driving up the access road to the site.
The story of fresh-faced idealists getting taken down a notch played well in the media. For two years the glass walls of Biosphere 2 were lined with TV cameras and tourists. The crew’s lives turned into reality TV. In fact, the producers of the world’s first reality TV show, Big Brother, which aired in the Netherlands in 1999, acknowledged Biosphere 2 as their inspiration. True to reality TV’s typical plotline, months cooped up together while struggling with their atmosphere and hunger and being filmed by well-fed people led to squabbles among the Biospherians. They emerged from the air lock in September 1993 in two groups of four who weren’t speaking. Organizational cracks opened between them and their advisory scientists and extended into their relationship with Ed Bass. Originally budgeted at $30 million, Biosphere 2 had already cost a reported $200 million. By the time a second crew took its place inside, Bass had had enough. On April 1, 1994, his bankers, accompanied by carloads of armed federal marshals and sheriff’s deputies, swept into the site with a restraining order. The second crew lingered inside Biosphere 2 for another five months and 16 days before terminating its mission.
Biosphere 2, it was widely reported, was a catastrophe. In 1999, when Time did its fin de siècle summary of the 20th century, it included Biosphere 2 in its list of the worst 100 ideas.
With the biospherians ejected from their eden, Bass’s people began looking for a new entity to operate the facility. Eventually they struck a deal with Columbia University. The new director of research was Wally Broecker, who had coined the term “global warming” two decades earlier. Here was a gigantic laboratory flask with a whole tropical forest and an ocean inside it—models of what many scientists suspected were the two biggest carbon sinks in the world. By 1995, when the deal was closed, Broecker was not alone in his sense of urgency.
Next page: Hot research site in a warming world