The self-guided professional development by the science faculty at Concord High School in New Hampshire has never been formally evaluated. But Thomas Crumrine’s students have benefited from techniques he’s learned during his 7 a.m. meeting with colleagues every other Friday for the past five years. While using interactive clickers during a unit on the conservation of matter, Crumrine found that 86 percent of his students incorrectly thought that the mass of a pile of iron nails in an open container would remain the same as the nails rusted, failing to take into account the additional oxygen. “In the past, if that question had been asked on a test, I would have been saddened but probably would have moved on to the next unit,” he says. Instead, he stopped the lesson, inserted a discussion about rusting and oxidation, and then continued.
School officials in Richardson, Texas, wanted a math program that could lift up low-performing middle schools and close a yawning achievement gap across racial and socioeconomic lines when they asked for help from the city’s largest employer, Texas Instruments (TI), in 2004. After considering several models, TI developed its own program. Tapping national experts in math education, the company provided professional development for teachers. They also supplemented the existing curriculum with lessons that incorporated technology—much like the interactive clicker system that Wieman and others use with undergraduates—and trained teachers to use it. For its part, the district doubled the amount of time spent on math and gave teachers shared planning time to prepare additional lessons.
The new program, called Math Forward, draws upon the work of Deborah Ball, dean of the School of Education at the University of Michigan, who believes that effective math teachers have an understanding of their subject that goes beyond what they have learned in course work and what they are required to teach in the classroom. This mathematical knowledge for teaching, as she calls it, allows them to resolve, for example, student misconceptions that aren’t addressed by the textbook. But training teachers in the concept isn’t enough, says Ball: “Interventions have to affect what happens in the classroom. Otherwise, they don’t do any good.”
Richardson officials say they have such tangible results. A program at one Richardson middle school in 2005 and 2006 helped one-third of the students who had failed the state math assessment the previous year pass the test the next spring. Last year the program was expanded to five middle schools and an algebra 1 component was added, and this fall its monitors will follow the original cohort into high school. Meanwhile, TI plans to go national. “We’ll offer it to any school district willing to make the necessary commitment to implement it with integrity,” says TI’s Lisa Brady Gill.
Scaling up a successful classroom intervention is tricky. Just ask Sharon Lynch, a professor of education at George Washington University, who’s been studying the use of three middle-school science units by the Montgomery County Public Schools in suburban Maryland. The federally funded project began in 5 schools and hopes to reach 35 of the 38 middle schools in the district.
Lynch found that only two of the three units actually “worked” in the sense of producing modest but statistically significant gains in student understanding. The third unit has since been dropped, and Lynch is unsure whether the remaining two lessons will be implemented consistently and whether the district can support the units properly after the grant ends.
The $5.2 million cost of Lynch’s federally funded project, which included extensive use of classroom observers, may push it beyond the reach of most efforts to monitor school reform. And the decentralized nature of U.S. education pretty much ensures that interventions will remain local, not national. “Frankly,” she says, “I think the idea of scaling up anything in the United States is a ludicrous notion.”
Bev Marcum, a biology professor at California State University in Chico, is more optimistic about prospects for improvement. Marcum directs the Hands-On Science Lab, a campus facility for elementary school children that features experimental stations staffed by undergraduates. The lab is a tool to train future teachers, a site of professional development for teachers, and a fun place to learn science.
In fact, the teachers at one school in this hardscrabble farm community have revised their entire science curriculum to make use of the concept. Last year Citrus Avenue Elementary School began offering Science Fridays, during which the school’s fourth, fifth, and sixth graders spend 90 minutes rotating among a half-dozen stations, just as they would at the university lab. “Our biggest problem is finding time to do lab-based science,” says Richard Aguilera, a former principal who four years ago decided to return to the classroom, “and our large ethnic population [the Hmong of Southeast Asia] poses a special challenge. So the hands-on lab approach is just great.”
What is the effect on student learning? The only research on the lab has shown that it improves teacher confidence and increases their knowledge. A rigorous study documenting the lab’s impact on student achievement awaits another day. “I don’t have enough resources to do [anything] credible,” Marcum admits. “And without it, I don’t want to make any elaborate claims.”
Coming up with that evidence is the challenge facing Marcum, Wieman, and other reformers. They agree it’s the only way to achieve the system of science education that the nation needs.