36: New State of Matter Could Lead to Practical Superconductors

By Kathy A. Svitil|Monday, January 03, 2005

Deborah Jin, a physicist at the National Institute of Standards and Technology, announced in January the creation of an exotic form of matter known as a fermionic condensate, which could eventually spawn a revolution in energy use and magnetically levitated trains.

Jin wasn’t searching for a technological breakthrough; she was seeking to extend earlier studies into the bizarre ways matter behaves at extremely low temperatures. In 1995 her colleagues showed that thousands of cold subatomic particles can behave like a single enormous atom, a state called a Bose-Einstein condensate. Jin turned her attention to fermions, a class of particles that includes protons, neutrons, and electrons—the building blocks of normal matter. Fermions resist intermingling, so Jin had to push them to extremes. She cooled potassium atoms to –459 degrees Fahrenheit, just 50 billionths of a degree above absolute zero, and trapped them in a vacuum. She then jostled the atoms, using a magnetic field and delicate laser bursts, until they matched up and formed unions, the hallmark of a fermionic condensate.

This mating dance is quite similar to the behavior of electrons inside a superconductor, a substance that shuttles electricity without resistance, heat generation, or lost energy. Superconductors could be used to construct incredibly powerful electromagnets and vastly improved electric motors. Unfortunately, existing superconductors work only when they are very cold (the highest working temperature so far is –216 degrees F), rendering them impractical.

Jin’s work could lead to superconductors that remain stable under everyday conditions. “This work is more than encouraging,” she says. “It means room-temperature superconductivity might actually be possible.”

Comment on this article
ADVERTISEMENT

Discover's Newsletter

Sign up to get the latest science news delivered weekly right to your inbox!

ADVERTISEMENT
ADVERTISEMENT
Collapse bottom bar
DSCDecCover
+

Log in to your account

X
Email address:
Password:
Remember me
Forgot your password?
No problem. Click here to have it emailed to you.

Not registered yet?

Register now for FREE. It takes only a few seconds to complete. Register now »